试题汇

您现在的位置是:首页 > 试题汇

试题汇

西北四省三重教育2026届高三12月高考适应性考试数学试卷(含答案详解)

马老师2025-12-26 22:09:59试题汇
  引言:《西北四省三重教育2026届高三12月高考适应性考试数学试卷(含答案详解)》,以下展示关于《西北四省三重教育2026届高三12月高考适应性考试数学试卷(含答案详解)》的相关内容节选,更

《西北四省三重教育2026届高三12月高考适应性考试数学试卷(含答案详解)》,以下展示关于《西北四省三重教育2026届高三12月高考适应性考试数学试卷(含答案详解)》的相关内容节选,更多内容请多关注我们网站

1、【!(#)】#$%&$%&!#$%&($)*%&+,()*+:-.,%/01234567、8%9:;&?-ABCDEF。GHI:+J=K5-LMNO-,PQ-LMR&?-A_。,、-./:01/23/,43/5,2 5643/789:;-+,+?A/BCD9($)*,+,-./01,01,2,+3456,(),(),2785#9,+:槡 槡 槡 ;,$%?:,+A$B,CDEF$:GHI$J K,/L$(),MNO,+34PQ9:(),RO:,SOTUVWX,V97YW,ZO,O,()G,+34$,)*,+7,_a/槡 槡 34,b/cd,()槡

2、 ,+()槡槡 槡 槡 E、F+-./:01/23/,43/5,2 5643/789-+F+A/BCD GH-I9J5,H5-I9JH55,-K9J534V9:,e:,+CJfgh,i2,+7ejk 27ejY,+eaWlm 2槡,+neop,qr:【!(#)】34es,t9r:,uvwx/ywx,z,+est97yw|?,d:es,x:槡 esvw?,wx:esvw?:?e G?d?K,d,,l?E?:,2 ,+:cd?d?2,+,?=N:槡 L、MN/:01/23/,43/5,2 5()?K!D?,$/34V9槡 S?9:(,),?RO,T7?9iT?i;YO,+?9,?:?L$()(),

3、2lW?,,bi()()(),+,?=N:、OP/:01/23/,2 5OPQR8SC9TUVW、XWYZ_(E)?#?&?,u$B?C?|?:6!?!?!?!?!?()B?K,$B,j$;()6W,9“,fifl6:?6,N?:j$()()()槡()槡,()()(),$B:()槡槡,()槡,槡 【!(#)】(E)34L$()槡 (),L$()?,j?ZlmK?,?:,:(),N(),”?;()()G?,,?N?=N(E)34?,ww,():w w;()2/?r:,H?d?,w7w|?d,qN:槡,,r【!(#)】(E)34L$()()()fl?,L$(),?,lmK?,f?()fl?

4、,SO,()?9(),Z_8,k9,kOE?:,()()?,()()()2,,N;:(E)34,(),()ZOGe:,V9YeW,ZO(,_7O1),S?V9,U9,U*:()e,?“()?V9,,?E?:,fl?,:V9?S?O,?O?;,?=N数学答案l.C N=(3+i)i=3i+i2=-l+3i,则 N 的虚部为 3.故选 C.2.C V A A B=9,=9,.*.=3.当 =3 时,A=1,9,-3),3=0,9;当 a=-3 时,A=1,9,-3),B=/6.当 x /6-时,a=(2),b=(/6,3),。与巳同向共线;当卫=一展时.a=(2,一即),b=(一展,3),.q与b

5、反向共线,:工=娓.故选A.4.B 下四百分位数即为第25百分位数,0.25义8=2,所以第25百分位数为第2和第3位数的平均数,即为 90.5.故选 B.5.D 由/(2)+4/+9z 1,贝lj/O)=1+8/+9,因为在等比数歹ij a)中,%,%是函数/(/)的极 值点,所以%+%=8,%=9,故*=9,且 a3 V。,。7。,故 4=。3(/。,故 为=3.故选 D.6.B由题意有:当/=多时,丁=2立X=/=产士力.所以八(与,所以 I=2p=8,乙 乙 乙 乙解得力=4,又因为。(3,%),所以|。/|=3+与=5.故选B.7.D 设log3Q=bgi=Z,则a=3,=4,即/=

6、2,当/23,4,即。/0时,)=/在(0,+8)上为增函数,则2=K2,3/4BP IV布q0,那么 cos(q)=/I-sin,(q-f 故选).乙 乙 A J9.AI)直线/过定点(一2,0),圆C:(z-2)2+J=8,所以圆心为C(2,0),半径为对于A,若=1,则圆 心。(2.0)到直线/一)+2=0的距离d=3=2,所以I与圆。相切,故A正确;对于B,依题意,由圆心 V2C(2,0)到直线x-ty+2=o的距离 LLz2Vf,解得tl或 cos b上文所以。=2=tan 8,故B正确;对于C,由A+B+C=n.A=-+B可得C=令一 23,且C sin d cos Z z(0,冗),则(。,多),则 2tan B+tan C=2tan B+tan(-2B)=2tan B4-n Tn=2tan B4 J=4/2/tan 2B 2tan B:tan 8+2jtan B-k二=6,当且仅当an 8=7r时,即tan 6=咚时,等号成立,故 2 2tan B v 2 2tan B 2 2tan B 3C 正确;对于 D,由 C 可知 A=8,C=23,则 cos A+cos B+cos C=sin 8+cos B+sin 23,令2

【西北四省三重教育2026届高三12月高考适应性考试数学试卷(含答案详解)】相关文章: